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Abstract Elemental analysis has played an important
role in the characterization of soils since inception
of the soil survey in the US. Recent efforts in analysis
of trace and major elements (geochemistry) have
provided necessary data to soil survey users in a
variety of areas. The first part of this paper provides a
brief overview of elemental sources, forms, mobility,
and bioavailability; critical aspects important to users
of soil survey geochemical data for appropriate use

and interpretations. Examples are provided based on
data gathered as part of the US soil survey program.
The second part addresses the organization of sample
collection in soil survey and how soil surveys are
ideally suited as a sampling strategy for soil geo-
chemical studies. Geochemistry is functional in
characterization of soil types, determining soil pro-
cesses, ecological evaluation, or issues related to soil
quality and health, such as evaluating suitability of
soils for urban or agricultural land use. Applications
of geochemistry are on-going across the US and are
documented herein. This analytical direction of soil
survey complements historic efforts of the National
Cooperative Soil Survey Program and addresses the
increasing need of soil survey users for data that
assists in understanding the influence of human
activities on soil properties.
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Introduction

Geochemistry is an evaluation of the distribution
(species and concentration) of chemical elements in
the biosphere (rock, soil, water, plants, and air) and
includes the study of chemical processes and reac-
tions that govern the composition of and chemical
flux between various states (Kabata-Pendias and
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Pendias 2001; Neuendorf et al. 2005). Much of the
current emphasis on geochemistry in soil science is
related to the chemistry of trace elements controlling
the movement, distribution, and fate in plants and
soils of native pools and anthropogenic additions of
elements (Roberts et al. 2005). Trace element is a
general term for those elements that are regarded as
having low concentration in soils or rocks. These
elements exist as both cations (e.g., Cu, Zn, Cd, Cr,
Hg, Ni, Pb, and Zn) and anions (e.g., As, Se, Mo, B).
Focus in the past was typically on essentiality of these
elements and many were regarded as micronutrients.
There are 17 trace elements regarded as essential for
plants based on their specific biochemical role
(Kabata-Pendias and Pendias 2001). Today, under-
standing of the essentiality of elements is still
important, but “trace” is somewhat a misnomer given
that these elements may have relatively high natural
concentrations in certain soils and with increased
recognition of anthropogenic contamination (human-
induced additions of elements) to soils worldwide
(Roberts et al. 2005). Patterns of natural soil
variability provide the starting point for understanding
and measuring differences between natural concen-
trations of elements and anthropogenic effects. A soil
survey separates this natural variability into soil
mapping units by application of the soil forming
factor model (Jenny 1941) to the landscape. These
factors are active in and responsible for the formation
of soil at any given point on the landscape (SSSA
1997). Depending on the impact of landuse, human
induced processes are also considered a factor of soil
formation (Yaalon and Yaron 1966; Tugel et al. 2005).

A soil survey is defined as the systematic exami-
nation, description, classification, and mapping of
soils in a designated geographic area (SSSA 1997).
State and federal soil survey activities in the United
States began in 1896 and have evolved into what is
now called the “modern soil survey” (Indorante et al.
1996). Original small scale-colored maps were gen-
eral in nature or were single purpose surveys like
those made for conservation planning. With the
formation of the National Cooperative Soil Survey
(NCSS) in 1952, the “modern soil survey” era was
born. This cooperative effort includes federal agencies
such as the Natural Resources Conservation Service,
Forest Service, Bureau of Indian Affairs, Bureau of
Land Management, universities, and state and local
agencies. The beginning of this era was marked by

the publication of more detailed and more sophisti-
cated soil surveys that were prepared on a photo-
graphic base. Soil Taxonomy (Soil Survey Staff 1975,
1999) was developed as the system for soil classifi-
cation, and soil surveys and soil survey information
were produced for multiple uses. The common
disciplinary thread of soil survey, regardless of the
era, is the study of soils or soil-landscapes in their
natural settings. The fundamental purposes of a soil
survey are to show geographic distribution of soils,
provide data on properties of component soils, and to
make predictions regarding landuse and management
(Soil Survey Division Staff 1993). To this end, a soil
survey includes soil maps, soil series descriptions,
map unit descriptions, soil data, taxonomic classifi-
cations, and interpretations. The detail of the soil
maps (scales commonly between 1:12,000 and
1:24,000), and the detail of the supporting informa-
tion provides an excellent foundation for trace
element survey whether studying natural trace ele-
ment variation or anthropogenic effects. Soil surveys
also supply researchers with a high degree of sample
stratification, which provides for a higher degree of
accuracy and precision when compared to more
general resource maps (e.g. landscape classification
maps or surficial geology maps).

A common component of the US Soil Survey
Program that has spanned the years has been the use
of elemental analysis to provide information about
soils and land use. Early studies (Brown and Byers
1935; Holmes et al. 1938) used geochemistry to study
soil uniformity with depth and pedogenic processes
such as mineral weathering, podzolization, and other
eluviation/illuviation processes. Those publications,
as well as Denison (1930), Byers et al. (1935), and
Holmes (1928), used the composition and silica/
sesquioxide (Si/Al+Fe) ratio of the colloidal fractions
(<1.0 μm) to define the property range for the series
boundary of soils. Marbut (1935) defined Category V
(Inorganic Colloid Composition Group) of the 1935
US Soil Classification System based on these types of
data, and published elemental data from both the
colloidal and <2-mm fractions to illustrate differences
in soils from across the US.

Later emphasis on trace elements by USDA-Soil
Conservation Service scientists within the Soil Survey
Investigations Division was related to landuse. Joe
Kubota (Alban and Kubota 1960; Kubota 1964;
Kubota et al. 1961, 1967) studied elements such as
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Co and Mo in relation to soil and plant deficiencies or
toxicities for animal production. George Holmgren
led a study that analyzed the concentration of Pb, Cd,
Zn, Cu, and Ni in agricultural soils across the U.S.
(Holmgren et al. 1993). This final study is regarded as
a primary source of elemental data on soils of the US.

Today, elemental data are being produced on sam-
ples collected as part of soil survey documentation
across the US. These analyses were necessitated by
the increasing demand for these data by soil survey
clientele and soil scientists of the NCSS requiring
information on native (background) concentrations of
trace elements in soils (Wilson et al. 2002; Burt et al.
2003b). Soil survey is in a unique position to provide
data on the complete spectrum of elemental distribu-
tion in soils as defined by extractable, exchangeable,
soluble, and total forms, accompanied by associated
laboratory characterization of physical, chemical and
mineralogical properties, and site specific field data.

The evolution of both the modern soil survey
(quantitative, multidisciplinary) and laboratory instru-
mentation (multi-elemental quantification) has re-
sulted in complementary, synergistic convergence
of these two aspects of science. This paper will
discuss the utility of geochemistry in soil survey with
the following objectives: (1) provide a brief overview
of background information related to sources and
bioavailability of trace elements in soils that affects
elemental distribution from a pedological perspective;
(2) describe how soil survey provides a logical
structure for determining elemental distribution from
natural sources over geographic areas; (3) discuss the
need, utility, and application of geochemical data
within the NCSS. These objectives will be discussed
in two parts, addressing issues related to elemental
distribution and reactivity in soils and the appli-
cability of these data to soil survey, respectively.

Materials and methods

Data used as examples in this paper are taken from
geochemistry data that are located on a geospatial
website at: http://soils.usda.gov/survey/geochemistry/
index.html. The dataset represents horizons from 636
pedons (the smallest volume that can be called “a
soil”) representing component soil series from map-
ping units across the conterminous USA, Hawaii, and

Alaska (Fig. 1). Pedons were described and samples
collected by standard soil survey procedures (Soil
Survey Division Staff 1993; Burt 2004). Samples
were sieved (stainless steel) to <2-mm and finely
ground (<150-μm) in a silicon nitride ball mill. The
soil digestion for trace elements seals 0.50 g soil with
9 ml concentrated HNO3 and 3 ml concentrated HCl
in a covered polypropylene vessel with microwave
digestion at 175°C for 4.5 min. The digested material
was quantitatively transferred with reverse-osmosis,
deionized water to a 50-ml final volume. Elemental
analysis was determined by ICP-atomic emissions
spectroscopy for all elements except Hg, the analysis
of which was performed with cold vapor hydride
atomic absorption. Quality assurance samples (blank,
duplicate, and certified reference material) were in-
cluded for every 28 samples in the digestion process.
Evaluation of standard reference material is described
in Burt et al. (2003b).

Sites were classed as either anthropogenic-influenced
or non-anthropogenic (natural) based on knowledge of
likely trace element contamination by agricultural,
military, industrial, or urban sources, providing a unique
database for users. In this paper, surface mineral horizon
data from the upper 50 cm was sorted into the two
classes and plotted in histograms and cumulative
frequency diagrams based on concentration ranges,
and the mean and median calculated. A subset of 22
pedons was selected to represent soils with different
lithologic sources and the median of horizons within
each pedon and average absolute deviation from the
median were calculated for Ni, Pb, and Zn. Also, eight
pedons from mapping units named for the Highsplint
series from Fayette and Raleigh Counties, West Virginia
were selected to examine how elements range across
pedons in a single series. The Highsplint soil is

Fig. 1 Location of pedons with geochemistry data used
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extensive, developed from sedimentary geologic mate-
rials, and mapped in several states in the Allegheny-
Cumberland Plateau region of the US. These data were
evaluated for differences between surface mineral (A
horizon) and lower subsoil (BC horizon). The mean,
median, and coefficient of variation for selected
elements were calculated. Box and whisker plots were
made for selected elements.

Trace elements in soils

Parent materials

Background or native concentration of an element in
soil is related to the mineralogy of the parent material
from which the soil has developed, modified by
pedogenic processes. Trace elements in native forms
occur in primary soil minerals as components of the
mineral structure. For example, Cu, Co, Pb, Ni, and
Zn are all present in a variety of silicate and
aluminosilicate minerals such as olivines, amphiboles,
micas, and feldspars. The wide variety of parent
materials creates a range in soil trace element content
of 2 to 3 orders of magnitude for many elements.
Also, there are specific parent materials that have
extremely high concentrations of selected elements
(Table 1). For example, certain sedimentary deposits
(organic rich coastal sediments and marls) are high in
As due to presence of sulfidic materials (Chen et al.
2002; Gough et al. 1996) and geologic deposits rich
in pyritic sulfur minerals contain enrichment of both
As and Se (Strawn et al. 2002). Selected soils located
on both coasts of the US are high in Co, Ni, and Cr
due to formation (i.e. regolith derived) from extensive
belts of metamorphic rocks composed of serpentine
minerals (Rabenhorst and Foss 1981; Burt et al. 2001,
Lee et al. 2001).

The median concentrations of Ni, Pb, and Zn for
all horizons (surface and subsoil) from 22 pedons
were summarized (Table 2) to illustrate this relation-
ship. Geologic information (soil parent material) for
Table 2 was derived from pedon descriptions. Soils
are sorted by increasing Ni concentration and these
data cover three orders of magnitude (2 to 2,400mg/kg),
while Pb and Zn ranged from non-detectable to 52
and 6.4 to 220 mg/kg, respectively (Table 2).
Gypsiferous rock and eolian sand (Drygyp and
Valentine soils, respectively) have low concentrations

of these metals. Highest concentration of these three
elements (2,400 mg/kg Ni) was in the Serpentano
pedon (serpentinite parent material), which also
contained elevated concentrations of Zn (208 mg/kg).
The sequential order of parent materials relative to
increasing concentrations of Pb and Zn is similar for
both elements, though differs for Ni. This difference
illustrates the variable composition of parent materials
relative to elemental composition of each element. The
range of values of these elements listed in Table 2 does
not encompass the entire natural range, but are a
reflection of selected soils in the dataset. For example,
higher values of Pb and Zn (>1,000 mg/kg) are found in
soils derived from or contaminated by geologic materi-
als with sulfide mineral inclusions (Pierzynski and
Schwab 1993).

Pedogenesis and redistribution

Primary minerals derived from soil regolith undergo
either congruent (dissolved, solution species are the only
products) or incongruent (secondary mineral species are
formed) dissolution during pedogenesis (Sposito 1989).
These weathering products may undergo vertical and/or
lateral redistribution as part of the biogeochemical
cycle. Processes affecting trace element distribution
within this cycle are important to understand and can
be considered on scales that range from a single pedon
to a watershed, ecosystem, or continent.

Plant uptake, leaching, runoff, erosion and gaseous
losses are all possible pathways for elemental redis-
tribution. Soil moisture and temperature are drivers
for pedogenesis and influence elemental distribution
ranging from accumulation of elements (e.g. Ca, Mg,
Na, B, Se, Mo) in specific landscape positions of arid
region soils to depletion of many trace and major
elements in tropical region soils. For example,
Marques et al. (2004) found that tropical soils on
old (late Cretaceous) geomorphic surfaces of the
Central Plateau of Brazil were enriched in elements
with a valence of 3 or more (Ti, Zr, Th, Cr, La, V),
attributable to the presence in resistant minerals or
incorporation in secondary minerals such as Fe oxides,
kaolinite, or gibbsite. Divalent elements such as Co,
Ni, Cu, and Zn were depleted due to weak adsorption
on oxides and organic matter in these acidic soils.

Vertical or lateral movement related to soil hydrol-
ogy and/or redoximorphic conditions can result in trace
element mobility as aqueous forms or as translocated,
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Table 1 Characteristics of selected trace elements in soils

Element Ionic
Form

Parent materials
with high concentrations
of the element

General reactivity in soils Mobility Sources of pollution

As As
(III)
orAs
(V)

Sedimentary materials rich
in sulfides (e.g.,coal
containing arsenopyrite,
organic rich coastal
sediments); sulfides of
ores of Ag, Pb, Cu, Ni,
etc. (Liao et al. 2005; Fio
et al. 1991)

As released from sulfides
by oxidation; as released
is adsorbed by oxides and
organic matter and maybe
bound by precipitation
with Al, Fe, Ca, and Mg
(Huang and Fujii 1996).
Aqueous species include
H2AsO�

4 , HAsO
2�
4 , and

As OHð Þ02 (Huang and
Fujii 1996). As5+ is the
stable oxidation state in
aerated soils (Yang et al.
2002)

Generally considered
mobile. May be retained
or possibly transported
via organic and inorganic
soluble forms in water

Wood preservative,
pesticides, coal burning,
mining/smelting, milling

Cd Cd
(II)

Similar geochemistry to
Zn and often found in
association with Zn
deposits. Low
concentration in
magmatic and most
sedimentary rocks, but
higher in argillaceous or
shales materials (Kabata-
Pendias and Pendias
2001)

Solution actitvity strongly
related to pH (Kabata-
Pendias and Pendias
2001). Adsorption
increases with increases in
OM, sesquioxides, clay,
pH (Romkens and
Salomons 1998);
adsorption to carbonates
(Renella et al. 2004);
forms soluble complexes
of CdSO0

4, CdCl
+ in

saline soils (Sposito 1989;
Suave and Parker 2005);
extremely toxic and no
known function in
biological processes
(Renella et al. 2004)

Considered more mobile
that other heavy metals
(Renella et al. 2004).
Highest mobility at
pH 4.5–5.5; relatively
immobile in alkaline soils
(Kabata-Pendias and
Pendias 2001)

Air pollution; metal plating
and other industrial/
municipal wastes
(Amacher 1996).
Phosphatic fertilizers;
sewage sludge (Renella
et al. 2004); Zn mining
and smelting

Cr Cr
(III)
or
Cr
(VI)

Ultramafic rocks or those
formations that have
undergone low grade
metamorphism, or
serpentinites (Burt et al.
2001)

Cr may exist as both
valence states in a soil. Cr
(III) remains in cationic
form at most soil pHs and
has very low solubility
(precipited as hydroxides
at pH>4.5 e.g., Cr(OH) or
Cr(OH)3 or Cr2O3;
forms both soluble and
insoluble complexes with
organics and minerals).
Cr(VI) exists in soils as
anionic form similar to
orthophosphate or sulfate
and the chromate anion
may be adsorbed by
oxides or precipated by
cations (Bartlett and
James 1996)

Generally immobile; most
soil Cr is Cr3+, which
tightly binds to both
organic and inorganic
materials, Cr6+ is much
more mobile (Suave and
Parker 2005). Cr in water
is as Cr6+ or colloidal,
organically-bound Cr3+

(Bartlett and James 1996)

In diverse industrial wastes,
metal finishing/plating/
electronics, wood treatment
(Förstner, 1995)
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Table 1 (continued)

Element Ionic
Form

Parent materials
with high concentrations
of the element

General reactivity in soils Mobility Sources of pollution

Cu Cu
(II)

Soils forming from Cu
mineral deposits rare.
Geological ore deposits
containing minerals with
Cu in association with Fe
and S. Most abundant in
mafic and intermediant
rocks; excluded from
carbonate rocks (Kabata-
Pendias and Pendias
2001)

Specific adsorption by
carbonates, clays, oxides,
and organic matter
(Romkens and Salomons
1998; Reed and Martens
1996); may be present as
exchangeable cation
(Reed and Martens 1996);
adsorption involving
exchange sites in acid soil
conditions, chemisorption
with organic ligands in
alkaline conditions
(Kabata-Pendias and
Pendias 2001).

Generally non-mobile due
to adsorption on organic
and mineral surfaces, but
biocycling results in
increasing surface
concentrations (Reed and
Martens 1996, Kabata-
Pendias and Pendias
2001)

Municipal sludge, waste
from smelting, poultry,
and swine manure (Reed
and Martens 1996)

Hg Hg
(O),
Hg
(II)

Low in most geologic
materials, but higher
concentrations when
sulfides present in rocks,
e.g., shales; present as a
sulfide mineral, cinnabar
(HgS), and associated
with other sulfide
minerals containing As,
Se, Ag, Au, Zn, Pb
(Crock 1996)

Very strong bonds with
S, either as inorganic
(forming HgS) or
organic (organic matter)
complexes, also
adsorption, or
complexed, soluble
forms of Hg by oxides
and clays (Crock 1996).
Precipitation as
hydroxide or carbonate
in alkaline soil, as sulfide,
or elemental mercury in
acid, reducing soils
(Crock 1996)

Strong adsorption by
organic matter (in acid
soils) renders it relatively
immoble; accumulation
at soil surface. In alkaline
soils, most adsorption
by Fe oxides

Combustion of fossil fuels
and volcanic activity;
sewage sludge,
agricultural input from
sterilizers, treated seeds:
also industrial input;
general widespread
occurance of element in
food chain (Crock 1996)

Ni Ni(II) Ultramafic rocks or those
formations that have
undergone low grade
metamorphism, or
serpentinites (Burt
et al. 2001)

Organic complexes, or
soluble complexes with
sulfate, bicarbonate,
carbonate (Sposito 1989)

Function as exchangeable
cation and bound by
oxides. Mobile under
reducing conditions
(Lee et al. 2001)

Mining, smelting, industrial

Pb Pb(II) Low in most geologic
materials, but higher
concentrations when
sulfides present in rock.
Ore deposits high in
sulfide minerals (PbS,
galena)

Can form dissolved and
colloidal organometallic
compounds; organic
complexes, or soluble
complexes with sulfate,
bicarbonate, carbonate
(Sposito 1989)

Generally considered
non-mobile, but limited
mobility demonstrated
in Norway (Steinnes
et al. 2005)

Automotive; long-range
athmospheric transport
(Steinnes et al. 2005),
paint

Se Se(0),
Se
(II),
Se
(IV),
Se
(VI)

Upper Cretaceous and
Tertiary-aged marine
sedimentary deposits

Microbial activity and
redox reactions affect
species; mobility and
sorption is species
dependent (Se(VI)
favored in oxidized,
alkaline conditions and

Mobile with oxidized
species (Se(IV), Se(VI)
more mobile than
reduced species (Se(0),
Se(II; Huang and Fujii
1996)

Mining or drainage/
irrigation of seleniferous
soils (Goldberg et al.
2006)
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soluble complexes bound to clay or organic com-
pounds (Quantin et al. 2002; Sommer et al. 2000).
Arsenic, Se, and Cr are three elements that change
oxidation state with changing redox conditions in the
soil, affecting their speciation, solubility, mobility,
and toxicity. Arsenic has been found to bioaccumulate
in wetland plants and organisms in wetlands (Chen
et al. 2002). It has low solubility under oxidizing
conditions [As(V)], but is much more mobile under
reducing conditions as As(III) (Masscheleyn et al.
1991). The oxidized species, arsenate, is an anion and
chemically similar (relative to mineral sorption) to
phosphate (Harris 2002). Selenite [Se(IV)] is adsorbed
more strongly to mineral surfaces and is more toxic,
while selenate [Se(VI)] is adsorbed weakly and is
readily leached from soils (Goldberg et al. 2006).
Chromium (III), the reduced cationic species, is less
toxic and less mobile relative to the anionic species,
Cr(VI). The decreasing mobility is related to bond
strength with soil minerals, complexation with soil
organics, and formation of oxide/oxyhydroxides in
the soil (Stewart et al. 2003).

Elemental cycling via plant absorption and resul-
tant accumulation in the organic fraction of surface
horizons is common for some elements such as Cu
and Zn. Elements such as Cu, Zn, Pb, and Ni do not
undergo changes in oxidation state in common soil
redox conditions. These elements are indirectly affect-
ed by changes in solubility and crystallinity of Fe and
Mn oxides that may change with soil redox status.
These oxides (as well as organic matter) are important
adsorbing or complexing agents. As organically com-
plexed ions or colloidal oxides, movement of these
elements (Cu, Zn, Pb, and Ni) can also occur via
diffusion or preferential flow through soils (Shuman
2005; Kabata-Pendias and Pendias 2001; Senesi and
Loffredo 2005). Cadmium has lower affinity for these
adsorbants (oxides and organic matter) and is more
readily absorbed and translocated through plants
(Basta et al. 2005).

Soil pH is another important factor influencing
element or trace element mobility. As pH decreases,
trace elements in exchangeable, complexed, or precip-
itated forms can be released and subject to mobilization.

Table 1 (continued)

Element Ionic
Form

Parent materials
with high concentrations
of the element

General reactivity in soils Mobility Sources of pollution

in solution; Se(IV), if
present, is strongly
adsorbed by soil). Se(IV)
considered more toxic.
(Fio et al. 1991,
Goldberg et al. 2006)

Zn Zn(II) Low but relatively similar
content in most geologic
materials, but higher
concentrations when
sulfides present in rock.
Ore deposits of Zn
sulfide, sphalerite.

Specific adsorption by
carbonates, clays, oxides,
and organic matter
(Romkens and Salomons
1998; Reed and Martens
1996); may be present as
exchangeable cation
(Reed and Martens 1996);
adsorption involving
exchange sites in acid soil
conditions, chemisorption
with organic ligands in
alkaline conditions
(Kabata-Pendias and
Pendias 2001).

Generally non-mobile due
to adsorption on organic
and mineral surfaces, but
biocycling results in
increasing surface
concentrations (Reed and
Martens 1996, Kabata-
Pendias and Pendias
2001)

Municipal sludge, waste
from smelting, poultry,
and swine manure (Reed
and Martens 1996)
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Seasonal changes in pH may influence metal solubility
especially in wetlands (Gambrell 1994), where associ-
ated fluctuations in salinity also influence elemental
sorption and mobility.

Correlation of data routinely obtained during soil
survey activities (e.g., Fe oxides, carbonates, salinity,
particle size, organic matter) can be useful predictors
of the concentration and reactivity of trace elements at
the landscape scale (Burt et al. 2003b; Ma et al. 1997;
Pardue et al. 1992; Mermut et al. 1996). This
relationship provides evidence of the importance of

common soil components influencing pedogenic
distribution and supports the examination of geo-
chemistry of soils within the context of a soil survey.

Anthropogenic additions

Anthropogenic additions are an important source of
trace elements in certain localized settings (Mermut
et al. 1996; Burt et al. 2003a) and occur from a wide
variety of sources such as mining, smelting, industrial,
transportation, military, and agricultural activities. An

Table 2 Variations in Ni, Pb, and Zn in 22 pedons developed from different parent materials sorted by increasing Ni concentration

Soil
namea

Location
(County, State)

Subgroup
Classificationb

Parent Material No.
Hznsc

Ni mg/kg Pb mg/kg Zn mg/kg

DryGyp Clark, NV Typic Palegypsid Gypsiferous rock 6 1.7±1.8 0.3±2.0 6.4±9.0
Valentine Dundy, NE Ustic Torripsamment Eolian sands 4 2.4±0.1 2.4±0.3 11.6±0.7
Cecil Oconee, GA Typic Kanhapludult Matamorphic-acidic

material
5 6.5±2.0 20.7±4.0 26.8+7.7

Gilpin Raleigh, WV Typic Hapludult Sandstone/Sitstone/
Shale

9 8.3±2.6 10.2±3.1 44.7±7.9

Bama Autauga, AL Typic Paleudult Fluvial or marine
sediments

6 15.4±7.4 11.9±2.7 27.5±12.8

Gilpin Fayette, WV Typic Hapludult Shale 8 16.8±3.7 12.9±3.4 51.0±7.0
Matewan Raleigh, WV Dystric Eutrudept Sandstone/siltstone/

shale
9 18.1±4.8 14.4±3.9 102.8±16.3

Miami Delaware, IN Oxyaquic Hapludalf Ground Moraine/
Till Plain

5 20.8±6.1 9.0±15.1 74.3±17.7

Monona Monona, IA Typic Hapludoll Loess 11 29.2±2.8 13.5±0.6 84.0±3.1
Saum Yamhill, OR Ultic Palexeralf Basalt Colluvium 6 31.2±3.3 8.7±1.4 219.7±24.8
Manor Howard, MD Dystric Eutrudept Micaceous schist 8 37.4±112.5 17.7±24.0 119.0±105.5
Goss Saline, MO Typic Paleudalf Cherty Limestone 3 52.2±32.5 22.8±11.4 95.9±38.8
Pane Maui, HI Humic Haplustand Volcanic ash over

basalt
6 61.6±23.3 <Det. Lim. 207.5±20.2

Jackland Baltimore City, MD Vertic Hapludalf Diorite 10 63.4±171.8 10.7±14.5 29.7±8.2
Brazilton Crawford, KS Alfic Udarent Reclaimed Mine

Spoil-Shale
8 69.0±11.0 23.7±5.2 118.4±18.7

Threetrees Curry, OR Typic Dystrudept Schist 6 70.5±22.3 52.1±77.8 149.3±37.3
Coto Aguas Buenas, PR Typic Eutrodox Limestone 7 71.6±3.5 21.6±1.2 84.6±4.4
Altamont Colusa, CA Chromic Haploxerert Graywacke or

mudstone
4 77.3±2.1 6.9±0.3 164.8±3.3

Waimea Hawaii, HI Andic Haplustoll Basalt 7 79.0±37.7 0.1±0.0 182.2±28.8
Ferncat Humboldt, CA Pachic Hapludoll Mudstone and/or sandstone 6 95.1±18.8 7.4±0.8 100.0±9.0
Nipe Aguas Buenas, PR Anionic Acrudox Ultrabasic 3 835.9±117.2 2.8±0.6 96.8±11.4
Serpetano Curry, OR Dystric Eutrudept Serpentinite 8 2423.6±753.2 5.0±19.6 207.7±32.6

Elemental data represent median value (±median absolute deviation) of horizons within each pedon

PR, Puerto Rico
a Series name assigned during sampling
b Classification (Soil Taxonomy, 2006) based on lab data and field description
c Number of horizons analyzed per pedon

158 Environ Monit Assess (2008) 139:151–171



element with a concentration above an established
background level is considered a contaminant, yet
this level does not necessarily imply the element is
causing harm (pollutant) or is particularly hazardous
to humans or biota (toxic; Pierzynski et al. 2000;
Kabata-Pendias and Pendias 2001). Contamination is
often attributable to point sources, though distribution
of pollutants may encompass a large geographic area.
If a source of pollution is known, then extent of
aerial distribution is a key to understanding degrees
of contamination (Liao et al. 2005). Generally, the
concentration of metals will decrease with distance
from the source (Pietz et al. 1978), though in con-
taminated areas, short range variability in concentra-
tion can be erratic due to wind and water redistribution
(Markus and McBratney 1996; Burt et al. 2003a).

There is speculation that purely background levels
(pristine soils free of human-induced pollution) do not
exist in many parts of the US and world due to
changing landuse history and long range atmospheric
deposition of pollutants (Chen et al. 1999; Steinnes
et al. 2005). A key factor of concern for trace elements
is the long residence time and their general insolu-
bility (high solid to solution partition coefficient) once
adsorbed by soil components (Markus and McBratney
1996; Basta et al. 2005). A second aspect of concern
is food chain bioaccumulation with the subsequent
risk to human health. Two well-documented examples
of bioaccumulation are tuna contaminated with high
concentrations of mercury (Waldman 2005; Burger
and Gochfeld 2004) and the occurrence of Itai-itai dis-
ease in Japan from the consumption of Cd contaminated
rice (Nogawa et al. 1983; Förstner 1995).

The goal of remediation specialists and land use
planners is to recognize and separate elemental con-
centrations that reflect native pools (parent material
and pedogenic sources) from the anthropogenic pool
within a given soil. The best measure of possible
anthropogenic additions is through comparison of the
study area to analogous soils with trace element levels
attributable only to background sources. These “sim-
ilar” soils used to derive suitable background values
should be developed from soils with comparable
parent material and genetic history (age, landscape
position, climatic regime, etc.) to the site in question.
Determination of similar sites can be facilitated by
applying soil survey information. A soil survey seg-
regates landscapes into similar soil components based
on soil forming factors and uses Soil Taxonomy (Soil

Survey Staff 1999) as a classification tool to label (or
“identify”) soils with similar properties.

Histograms are useful to compare data from a
particular site to the range of trace element concen-
trations of a larger group of soils. This technique is
useful due to the diverse and wide range in concen-
tration of metals in soils and allows a soil to be placed
in a relative context. Figure 2 illustrates that a group
of elements (Cu, Ni, Zn, Co, and Pb) have median
values in surface horizons of nonanthropogenically
influenced soils that range from 9.1 to 15.8 mg/kg,
with a 1000 fold range in concentration. Chromium is
similar (median=23.9 mg/kg), though its natural range
in this dataset is 10,000 fold (0.41 to 6029 mg/kg).
Cadmium and Hg have lower natural concentrations
ranges in soils than the other elements. In general,
these values are very similar to median values and
ranges reported by Förstner (1995) and Shacklette and
Boerngen (1984).

Histograms for anthropogenically influenced soils
(Fig. 2) generally reflect higher median values and
wider ranges for specific elements. For example,
median Cu values for anthropogenically influenced
soils are 35.1 versus 15.2 mg/kg in non-contaminated
soils, with a range up to 1837 mg/kg compared to
377 mg/kg, respectively. This disparity of values
between anthropogenically influenced and native soils
is especially striking for Pb, with a median value of
36.5 versus 9.9 mg/kg, respectively.

Cumulative frequency diagrams are very useful to
examine these data to gain additional insight into
population distributions. About 90% of the samples
for Cu within the non-anthropogenic population are
<70 mg/kg [Fig. 3(Cu)], whereas the value increases
up to 300 mg/kg for anthropogenically influenced
soils. An opposite trend is apparent for Co (90% of
non-anthropogenic samples are <60 and <20 mg/kg
for anthropogenically influenced samples; Fig. 3(Co)]
illustrating that every element may not be elevated in
every trace element or that native concentrations of
certain elements are naturally high for selected soils.
Other elements that exhibit similar cumulative fre-
quency diagrams relationships between the anthropo-
genically influenced and non-contaminated datasets
(as Co) are Mn and Ni. The trend for Ni is likely
related to inclusion of pedons with elevated natural
concentrations derived from serpentinite rocks. Thus,
use of any geochemical dataset (individual site or
regional comparisons) requires knowledge of pedons
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sampled as well as characteristics of the soils in the
area of concern.

An alternative approach for evaluating possible
anthropogenic additions at a site is to examine the
concentration of an element in a surface compared to
subsoil horizons. This evaluation recognizes that an
elevated surface concentration may be an indicator of
metal deposition (Esser et al. 1991; Romkens and
Salomons 1998; Steinnes et al. 2005). The approach
will be problematic in cases where changes in depth
functions of elemental concentrations result from
multiple lithologies within the soil profile or pedogenic
alterations such as soil–plant elemental cycling related
to organic matter accumulation. Also, understanding
landscape hydrology in an area are essential to proper
site selection and interpreting data. Groundwater flow
paths through the landscape (Richardson et al. 2001)
impact elemental redistribution and may concentrate
certain elements at discharge sites (Sherman 1952;
Fio et al. 1991; Lee et al. 2001).

Bioavailability

The bioavailability and toxicity of an element are very
difficult to predict and there is no agreement on a
single procedure to document such characteristics for
an element. The total concentration of an element in
soil is generally acknowledged as the best approach
whereby to understand the degree to which a soil may
be contaminated or pose a health risk to humans. This
approach requires comparing concentrations of an ele-
ment at a site in question to similar non-contaminated
soils and will vary by soil type. Careful selection of

comparable sites is critical to evaluate native concen-
trations of metals and to account for metal enriched
soils that are natural. This need to document possible
contamination has resulted in a number of statewide
(Ma et al. 1997; Franklin et al. 2003; Ciolkosz et al.
1993a,b, 1998; Bradford et al. 1996; Pettry and
Switzer 1993; Ammons et al. 1997; Chen et al. 1999)
and national studies (Shacklette and Boerngen 1984;
Holmgren et al. 1993) of trace element concentrations
in soils in the US. One aspect of importance is that
some of these studies may be based more on easily
obtained “grab” samples than by careful site selection
by landscape evaluation.

There is international recognition of the importance
of understanding the geochemistry of soils. Both
Canada (Haluschak et al. 1998) and Japan (Takeda
et al. 2004) have completed studies relating geo-
chemistry to soil types. The international geoscience
community for many years focused on geochemistry
of stream sediments related to mineral resource
exploration. Recently, they have shifted emphasis to
the understanding the geochemical composition of the
earth’s surface in an effort of achieving sustainable
worldwide development (Darnley et al. 1995; Plant
et al. 2000). Darnley et al. (1995) discusses the need
for international standardization of sampling and the
development of analytical schemes for both continen-
tal and sub-continental (regional) geochemical studies.
An objective of these studies is to identify regional
scale processes influencing abundance (deficiencies and
excesses), and the mobility and bioavailability of
elements. Examples of completed studies include
China (Xie and Yin 1993), the Baltic Soil Survey

Fig. 3 Cumulative frequency diagrams for Cu and Co. Plots are for non-anthropogenic and anthropogenic-influenced datasets

Environ Monit Assess (2008) 139:151–171 161



(Reimann et al. 2000), which includes geochemistry
of 10 countries from northern Europe, and the
FOREGS (Forum of European Geological Surveys)
project spanning 26 European countries (Salminen
et al. 2005). A low density geochemical survey for
mineral exploration was performed in Canada and
included both soils and till (Garrett and Thorleifson
1991; Garrett 1994).

Bioavailability depends upon the reactivity or
behavior of an element in soils. This is an extremely
complex phenomenon related to both the chemistry of
the soil (pH, redox potential, cation exchange capac-
ity, mineral and organic composition) and physio-
chemical form of the element (Singh 1997; Table 1).
The retention of each element depends on an intricate
equilibrium between soluble and complexed forms,
and reaction with soil particles (Renella et al. 2004).
The free metal ion in solution is the more biologically
active species in soils compared to complexed,
colloidal, or sorbed forms (Sauve and Parker 2005).
A key question concerning concentrations of trace
elements is often not the total concentration, but the
degree of risks or hazards from specific species of a
particular element. To better understand the forms of
an element in soils, researchers examine the specia-
tion through direct analytical measurements, often in
association with computer modeling, or by fraction-
ation (D’Amore et al. 2005). Fractionation or “geo-
chemical partitioning” is another technique involving
examination of the relative amounts of an element
sequentially extracted by a series of chemical solu-
tions of increasing “strength” (e.g., water → neutral
salts → chelating agents → organic acids) that target
specific chemical forms, e.g., soluble, exchangeable,
or adsorbed fractions (Tessier et al. 1979; Burt et al.
2003a).

Pathways of elements from soils to humans (soil,
plant, animal, human) and the relative mobility or
toxicity of an element in each pathway segment
should be determined to evaluate probable risk
(Chaney et al. 2000; Basta et al. 2005). The mobility
of an element within the food chain ultimately affects
the likelihood of an adverse affect on humans. A
major health concern is the risk of excess trace
elements entering humans via consumption of plants
or animals that have absorbed high concentrations of
an element. A second concern is the risk from direct
ingestion of soil by humans. The fraction of the soil
trace element that is available for sorption is “bio-

available”. Plant absorption of soil trace elements is
of specific concern and many studies test extracting
solutions that correlate to plant concentrations. These
extractants are designed to remove a portion of the
element from the soil that is absorbed by plants
(Houba et al. 1996; McBride et al. 2003; Darmody
et al. 2004) and are similar to soil fertility tests. Yet,
no single extractant common to all elements or plant
species for a bioavailability-based measurement exists.
Bioavailability of an element within the human
stomach is estimated based on the solubility and
release of the metal ion from soils using specific
chemical conditions that mimic the human digestive
system (Yang et al. 2002; Stewart et al. 2003; Fendorf
et al. 2004).

The differing degrees of elemental absorption, as
well as tolerance exhibited by plant species are well
known (Kukier and Chaney 2001). This degree of
absorption, termed phytoextraction, is being explored
as a means of soil remediation. The process is viewed
as efficient and environmentally sound (Chen et al.
2004) and is being performed by plants that are
“hyperaccumulators”, capable of absorbing large
amounts of trace elements (>1,000 mg/kg in above
ground biomass) from contaminated soils (Lombi et al.
2001; Cong and Ma 2002).

Geochemistry in soil survey

Organization for sample collection

Soil surveys are ideally suited for developing a
sampling strategy for soil geochemical studies. The
grouping (mapping and classification of soils) pro-
vides the basis for the systematic study of soils in
their natural settings; i.e. the soil landscape. Soil
properties exhibit systematic variability based on
factors of soil formation (Upchurch and Edmonds
1991). The development of landscape models, refined
using laboratory, site, and morphological data, allows
identification of the dominant soil component on each
landscape unit. Soil maps developed from these data
and models provide a basis for understanding soil
geographic variability at local, regional, national, and
global levels (Soil Survey Staff 1999). Knowledge of
the spatial variation within and among soils provides
a basic and powerful structure that is useful in
designing soil geochemical studies that yield the
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maximum amount of information for the time and
effort invested in sampling and laboratory analysis. In
their study of the derivation of geochemical back-
ground values, Reimann et al. (2005) concluded that
factors related to soil forming processes such as
similarity of soil parent material (geology), climate,
and vegetative cover are critical criteria in designing
geochemical studies.

The physical entity of the dominant, representative
component of a soil mapping units is termed the
“pedon”. The selected pedon is named for a soil series,
the lowest category in Soil Taxonomy. As a taxonomic
class, a series is a group of soils that have horizons
similar in arrangement and in differentiating character-
istics (Soil Survey Division Staff 1993). The common
differentiating characteristics are quantifiable; though
the underlying thread has a process or genetic basis.
Series serve as a major vehicle to transfer soil infor-
mation and research knowledge from one soil area to
another (SSSA 1997) and therefore can be a powerful
tool for understanding geochemical variation within

and among soil series. More than 20,000 series have
been recognized in the United States (Soil Survey
Staff 1999). The NCSS has designated a subset of
important series as “benchmarks soils”. Benchmark
soils have large extent, key position in the soil
taxonomic system, or special significance for landuse
(Soil Survey Staff 2006). There are currently 1,255
benchmark series (USDA-NRCS 2005a). Benchmark
soils are regarded as the most critical series to
characterize and emphasis has been placed on col-
lecting data on representative pedons of these series.

These selected soils routinely undergo character-
ization of chemical, physical, and mineralogical
properties on all major horizons (Soil Survey Staff
1999) and it is advantageous to obtain geochemical
analyses on these same representative pedons. Site
and morphological properties of representative
pedons are documented. Detailed observations on
geologic origins and information related to mineralo-
gy should be recorded in pedon descriptions of
observed and sampled sites for optimum use of these

Table 3 Elemental data and summary statistics from A and BC horizons of pedons sampled as Highsplint in West Virginia

As Ba Be Cd Co Cr Cu Mn Ni Pb Sr Zn Hg
mg/kg μg/kg

A horizon 10.37 330.75 1.16 0.35 14.64 20.94 15.59 1244.44 14.86 17.25 34.21 77.41 100
17.48 78.10 0.78 0.13 5.67 14.56 5.32 88.04 8.10 15.53 13.03 32.85 49
14.14 318.32 1.71 0.36 15.25 21.49 17.40 895.82 25.10 22.15 20.63 117.40 59
18.50 255.56 1.51 0.42 18.30 29.55 19.92 1604.20 28.85 27.63 17.68 118.25 74
7.54 81.18 0.68 0.18 8.17 17.38 9.09 159.94 11.07 13.93 4.68 52.28 36
11.67 409.98 2.06 0.44 17.15 27.64 18.35 1546.63 29.24 16.00 22.67 122.69 58
8.76 162.99 1.06 0.22 9.70 25.38 9.42 904.98 14.64 28.12 12.84 65.41 74
7.56 67.52 0.32 0.16 3.75 21.44 8.25 108.04 8.86 20.95 8.35 40.42 74

median 11.02 209.28 1.12 0.29 12.17 21.47 12.51 900.40 14.75 19.48 15.36 71.41 67
mean 12.00 213.05 1.16 0.28 11.58 22.30 12.92 819.01 17.59 20.45 16.76 78.34 66
cva 0.36 0.63 0.50 0.44 0.47 0.23 0.43 0.77 0.50 0.26 0.55 0.47 0.3

BC Horizon 14.24 148.85 1.12 0.17 6.52 27.35 13.6 200.93 17.02 13.17 22.08 61.03 47
11.03 81.55 1.34 0.11 8.88 18.31 10.42 162.64 17.49 8.79 16.63 60.10 33
12.78 141.25 1.29 0.18 11.49 18.53 15.53 403.84 20.65 11.57 5.27 89.88 22
15.75 119.35 1.29 0.15 9.75 23.65 18.86 452.13 23.03 11.86 10.30 83.85 53
10.35 113.43 0.95 0.16 7.65 22.34 12.77 208.19 18.23 10.64 8.15 72.68 24
11.97 118.11 1.03 0.23 14.12 23.72 19.77 493.65 22.54 13.62 7.43 100.52 39
– 85.97 0.86 0.13 8.71 25.76 11.83 227.10 18.65 13.23 9.80 44.88 49
12.34 357.17 1.34 0.10 10.92 30.75 32.22 609.70 18.61 19.39 36.10 92.28 106

median 12.34 118.73 1.21 0.16 9.32 23.69 14.30 315.47 18.63 12.52 10.05 78.27 43
mean 12.64 145.71 1.15 0.15 9.76 23.81 16.81 344.77 19.53 12.78 14.47 75.65 47
CV 0.15 0.61 0.16 0.27 0.25 0.18 0.42 0.48 0.12 0.24 0.71 0.25 0.6

aCV, coefficient of variation for mean
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locations for geochemical evaluation and correlation.
This analytical approach associates geochemistry
data, analyzed to 2 m deep (or lithic contact), with
landscape, soil morphological data, and other physical
and chemical properties.

Trace element variation within series

Background values established for geochemical soil
interpretations should document the natural distribu-
tion of an element and are generally not a single
value, but a range or another statistically derived
value, and must account for spatial aspect of the
geochemical data (Chen et al. 1999; Reimann et al.
2005). Soil variability has been extensively studied,
approached from both a theoretical, modeling basis
(Heuvelink and Webster 2001; McBratney et al. 2000)
and by evaluation of variability for specific soil
properties based on scale of mapping (Leenhardt
et al. 1994). Geochemical variability by soil order has
been evaluated (Ma et al. 1997; Chen et al. 2002; Burt
et al. 2003b) and geochemical variability between
different series has been documented in statewide

studies. Yet, utility of background values established
for representative pedons should examine variability
among pedons of a single series as well. Evaluation of
variability of these data within a series will require a
much larger dataset and range of data for a specific
element will likely vary based on uniformity of
regolith on which a series is mapped.

Geochemical data on selected West Virginia soils
has been produced on replicate pedons to evaluate
this variability. Table 3 illustrates data from the
surface (A horizon) and subsoil (BC horizon) from
eight pedons of mapping units of the Highsplint
Series. The Highsplint (loamy-skeletal, mixed, active,
mesic Typic Dystrudepts) consists of deep and very
deep soils in mountains and hills developed from stony,
loamy colluvium weathered from sandstone, siltstone,
and shale. These pedons generally have uniform clay
contents and decreasing organic C and NH4 acetate-
extractable Ca+Mg with depth (data not shown). The
geochemistry data illustrate the range of variability
of elemental composition among these pedons
(Table 3). For example, Cu ranges from 5.3 to
19.9 mg/kg in the surface horizons. The range in

Fig. 4 Box and whisker
plots for selected elements
from A and BC horizons of
pedons sampled as the
Highsplint series in West
Virginia. The midpoint of
the box is the median of the
data, while the left and right
ends of the box illustrate the
median of the values below
(lower quartile) and above
(upper quartile) the median,
respectively. Whiskers on
either end of the box repre-
sent lower and upper
extremes of data
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elemental data for surface horizons is generally wider
than for the lower (BC) horizons (Fig. 4). This trend is
also supported by the lower coefficient of variation for
elements in the subsoil compared to surface horizons
(Table 3). These lower range in data for surface
horizons indicates that even though environmental
concerns are often focused on topsoils, more mean-
ingful relationships derived from soil survey data may
come from subsoils. Lower horizons are often more
geochemically controlled by parent material relation-
ships as opposed to depositionally and biocyclic-
controlled amounts in surface horizons.

Geochemical applications within soil survey

Geochemistry data can be used to define ranges of
soil properties for soil series or mapping units,
including taxonomic placement (Burt et al. 2001). It
has been useful in characterizing pedon and landscape
processes such as direction or extent of weathering
and determining the nature or origins of parent
materials (Jersak et al. 1997; Wilcke and Amelung
1996; Muhs et al. 2001).

Soil quality/soil health decisions regarding land
use and possible reclamation or restoration often
require geochemistry and other related soil character-
ization data. An early application related to health was
the study of molybdenum (Mo) toxicity in cattle due
to specific forage species and soil properties in
Nevada (Kubota et al. 1961). This study documented
the influence of parent material, soil moisture status,
and surface horizon thickness on the content and
supplying capacity of Mo to legume and grass–
legume pastures. A current example is the involve-
ment of USDA-NRCS in stream restoration efforts in
several areas of the US (USDA-NRCS 2005b). One
ongoing project is the Willow Creek Reclamation
Project near the town of Creede, Colorado. Acid mine
drainage has resulted in elevated Zn, Cd, and Pb in
the creek and riparian area and has altered Willow
Creek to the extent that populations of fish and other
aquatic species can not be maintained (Taylor et al.
2001). The objectives of the project are to reclaim
damaged riparian areas along the stream created by
past mining activities and improve the economic
viability of the area. This is being accomplished in
part with a designed sampling scheme to evaluate
trace element concentrations in both soil and water.

The update of soil surveys in West Virginia is
emphasizing improved characterization of major soils.
Central to this effort has been the determination of
amounts and distributions of important forest
nutrients and trace elements. A sampling design
was initiated to provide soil survey information to
relate major differences in forest site productivity to
geologic composition as quantified by elemental
data. These elemental data assist in correlation
decisions to add and/or differentiate series in the
state and make it possible to provide trace element
quantity and distribution data to soil survey users
under “native” conditions. Soil surveys in West
Virginia are expected to have an expanded utility
that will be valuable for forest, agriculture, and
waste application management.

Selected pedons sampled as part of soil survey
mapping as well as additional sites in North Dakota
have been analyzed for trace elements. Interest in
trace element distribution was initially stimulated by
Cd, an element of concern in the northern tier of states
due to its accumulation in durum wheat, confection-
ary sunflowers, and flax (Li et al. 1997). Production
of durum wheat is concentrated in the northern US
and Canada and this crop is a major export for use in
pasta manufacturing. Unfortunately, concentrations of
Cd in the grain can exceed acceptable limits (House et
al. 2003). It is believed that elevated Cd in this area is
related to natural concentrations in till soils and may
also be influenced by the use of phosphatic fertilizers.
Research has shown that uptake of Cd from soil by
durum wheat is related to soil properties, including
salinity (especially chloride; Norvell et al. 2000), and
can be spatially related to soils with restricted
drainage characteristics (Wu et al. 2002).

Mapping of soils in river basins and other areas of
the western US that have elevated Se content is a
critical aspect of properly managing this element in
aquatic systems. Selenium is an essential element
found in food and water, and commercially used in
vitamins and some shampoos. It is also known to be
carcinogenic if ingested in high concentrations. The
element naturally occurs in elevated concentrations in
Upper Cretaceous and Tertiary-aged marine sedimen-
tary deposits found in Colorado, California, Utah,
Arizona, Nevada, North Dakota, South Dakota,
Nebraska, and New Mexico (e.g., Mancos and Pierre
Shales). Hazards of Se to waterfowl in the Kesterson
Basin in the western San Joaquin Basin, California
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became apparent in the 1980s where this mobile
element was concentrated in irrigation evaporation-
pond waters (Deverel et al. 1984). The state of
Colorado has recognized the potential toxic effects
to fish and wildlife. Rivers and lakes in affected areas
have Se concentrations commonly exceeding EPA
limits (5 μg l−1). A public and multi-agency govern-
mental taskforce (including USDA-NRCS) was
formed in the Gunnison Basin of Colorado to assess
the problem of Se from irrigated soils along the
Uncompahgre and Gunnison River Basins of the
upper Colorado River (http://www.seleniumtaskforce.
org/indexold.html).

Baseline elemental data on both recently sampled
and archival Nevada soils have been produced to
address requests related to soil geochemistry in both
rural and urban areas. Mercury contamination exists
in some western Nevada soils due to gold milling and
smelting of ores dating back to the nineteenth century
mining of the Comstock Lode near Virginia City.
Contamination of soils by methyl mercury along the
Carson River and tributaries to the Truckee River has
impacts on stream restoration, constructed wetland
projects, and health of fisheries in Lahontan Reservoir
and Pyramid Lake (Gustin et al. 1994; Bonzongo et al.
2006). Scientists have also requested soil geochemical
data related to W for investigating a childhood leu-
kemia cluster in Fallon, Nevada. Geochemical data
were useful in northwestern Nevada due to concerns
of downwind deposition of metal-bearing dust from
long-term, open-air destruction of munitions and
rocket engines at the Sierra Army Depot near Herlong,
California (Burt et al. 2005). Survey level data such as
these can be used to evaluate the need for more in-
depth studies if actions related to soil remediation
appear necessary.

Urbanization is placing a greater demand on land
in and around cities, and geochemistry of soils in
these areas can mirror the shifting patterns of landuse.
Natural geographic patterns of soils on landscapes are
altered via disturbance, often with the addition of
organic or inorganic pollutants. The moniker of
“anthropogenic” takes on a much broader meaning
for urban soils as human influence is one of the
dominant soil-forming characteristics (Evans et al.
2000; Langley-Turnbaugh et al. 2005). Knowledge of
geochemistry is regarded as one of the most important
issues facing urban land use, and trace element distrib-
ution has been an important facet of understanding

the urban environment (Chirenje et al. 2003; Murray
et al. 2004; Cattle et al. 2002). Howard Mielke has
been a pioneer in the effect on public health of
elemental contamination of urban areas of both
Baltimore (Mielke et al. 1983) and New Orleans
(Mielke et al. 1999, 2000; Mielke 2005). He has
conducted extensive sampling and trace element
analyses for soils in these cities and established direct
links of soil concentration to exposure and health
affects. Langley-Turnbaugh et al. (2005) used geo-
chemical data to illustrate the complex horizontal and
vertical spatial variability that exists in urban soils
disturbed from industrial use in the late 1800s in
Portland, Maine. These authors also found correla-
tions of trace elements with other soil properties, thus
anticipating use of these ancillary data (e.g., Fe, clay,
pH) to help further the evaluation of urban soils in the
city. Urbanization is altering the landuse of soils
formerly used as orchards in northern Virginia and
Maryland. Long term use of insecticides such as lead
arsenate has fostered the accumulation of Pb and As
(Codling and Ritchie 2005). Data are needed on both
contaminated orchard soils as well as uncontaminated
(baseline) soils to evaluate the extent and potential
hazard for future landuse applications.

Soil surveys can document soil-related problems or
characteristics in general terms that exist in urban
areas by conducting case studies as part of the soil
survey. Urban areas have unique distribution of soils
and demand different evaluation techniques than
conventional soil surveys in rural areas. These soil
surveys can also provide guidance or interpretations
regarding landuse for playgrounds, gardens, or resi-
dential areas where residents are in contact with the
soil. Chemical problems of soils are often difficult to
recognize in the course of a normal soil survey, but
detailed investigations are warranted when problems
are suspected (Evans et al. 2000).

Outlook

There is an ever increasing need to define properties
of soils for use and management as well as evaluate
the impacts of landuse. Human activities alter the
properties of soils and we are becoming increasingly
aware of the importance of defining this resource
relative to sustaining its use. Measuring the influence
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of humans on soils has been the subject of new
“directions” in soil science, whether termed soil
quality, use-dependency, soil health, or dynamic
change. Tugel et al. (2005) emphasize the mandated
importance of soil surveys to address questions of
environmental quality and sustainability. Elemental
analysis is one of the principal tools we can use to
quantify the changing properties of soils from urban,
industrial, recreational, forest, and agricultural use.
Geochemistry also has additional applications within
the soil survey program in relation to soil genesis,
taxonomic classification, and reclamation. The devel-
opment of these data will enhance the utility of soil
surveys and will broaden the types of future clientele.

Soil survey has a long history of utilizing geo-
chemical information to elucidate soil processes and
define soil components. Elemental analysis, whether
it is from an exchange or adsorption/desorption
reaction, selective dissolution, or total analysis, is
the “bread and butter” of laboratory data that is
provided for understanding the properties of soils. For
soil survey, these data are produced on benchmark
pedons, selected by field scientists to represent the
major soil components in a landscape unit. Detailed
observations on geologic origins and mineralogy need
to be recorded in pedon descriptions of observed and
sampled sites for optimum use of these locations for
geochemical analysis. This information is required
due to the important relationship of trace element
content to soil parent materials.

Analysis of these benchmark pedons by genetic
horizons throughout the depth of the soil greatly
increases the utility of the data compared to samples
taken on surface horizons only. Also, geochemistry
data produced by soil survey is part of a comprehensive
dataset that links site specific data to landform,
landscape, Major Land Resource Area (MLRA), state,
and national interpretations. Future studies of elemen-
tal distribution in selected watersheds and develop-
ment of landscape models will aid in our understanding
of geochemical distribution, but will also function as
a methodology for developing models for MLRA
updates in soil survey.

The optimal role of scientists in the NCSS Program
relative to geochemistry is to provide an understand-
ing of trace element ranges for different soils, parent
materials, and regions, and assist in interpreting these
data based on soil geography, pedogenic processes,
and basic characterization data. Soil scientists can

help users of our soil information understand land-
scape distribution of soils, processes in soils that lead
to elemental segregation, and the degree of variability
in soil properties that occur in a landscape. In this
way, users of soil survey information (including
geochemists) can make educated decisions regarding
potential problems that may exist in specific areas. In
addition, a soil scientist has an understanding of
chemical and physical properties and processes in
soils and this knowledge could be used to inform the
public relative to minimizing potential hazards of
landuse. Common techniques to decrease trace ele-
ment bioavailability and potential hazard are burial,
adjusting soil pH, or adding organic materials,
phosphates, or Fe oxides to sequester or immobilize
these elements (Chaney et al. 2000; Kukier and
Chaney 2001; Illera et al. 2004). Other solutions are
in situ capping, or excavation and removal. Soil
scientists can communicate these types of methodol-
ogies to the public relative to landuse in potentially
contaminated areas even without site specific data
regarding levels of targeted elements and/or knowl-
edge of bioavailability. The assistance soil scientists
provide to the public on issues related to soil
geochemistry can be a key to keeping soil survey
relevant to user needs in the future.
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